

Temperatur-Analysen mit Konvektion und Konduktion

<u>www.femcad.de</u> <u>www.fem-infos.com</u>

Kapitel 7b - Temperatur-Analysen mit Konvektion und Konduktion

Konvektion oder Wärmeströmung ist eine Wärmeübertragung, bei der Wärme durch strömende Flüssigkeiten (z.B. Wasser) oder strömende Gase (z.B. Luft) übertragen wird.

Konduktion oder Wärmeleitung ist eine Wärmeübertragung zum Transport von thermischer Energie. Wärme fließt dabei immer in Richtung geringerer Temperatur ohne Wärmeenergieverlust.

Wärmestrahlung ist eine Wärmeübertragung durch elektromagnetische Wellen. Die Sonne ist die wichtigste Quelle für Wärmestrahlung.

Beispiel 1: Isolierte Wand mit einer 2D-Konvektion

Eine Wand mit einer Wärmeleitfähigkeit von 1.2 W/mK wird auf der linken Seite über einen Boiler auf 1000 °C erhitzt. Die Wärme wird über die Isolierung mit 0.3 W/mK an die Luft mit einer Konvektion von 30 W/m²K und einer Umgebungstemperatur von 27 °C abgeführt. Berechnen Sie die Temperaturen

T1 bei X= 0 m
T2 bei X= 0.5 m
T3 bei X= 1.0 m
T4 bei X= 1.06 m

Knotenpunkte im Linien-Modus eingeben

Starten Sie MEANS V12 und wählen Register "Datei" und "Neu" und wählen das Menü "Neues FEM-Projekt mit Balken-Linien-Modus erstellen".

🔡 Neues 🛙	^p rojekt	-		×
○ 3D-N	etzgenerator NE	TGEN (STEP, I	GES, STL))
O 3D-N	etzgenerator GM	SH (STEP)		
Neue	s FEM-Projekt mi	t <mark>Balken-Linie</mark> n-	Modus ers	tellen
() Neue	s FEM <mark>-</mark> Projekt mi	t Behälter-Netzg	generator	
			_	

und geben im Linien-Modus folgende 6 Knotenpunkte ein:

 $\begin{array}{rrrr} 1 & 0, 0, 0 \\ 2 & 1, 0, 0 \\ 3 & 1.06, 0, 0 \\ 4 & 1.06, 2, 0 \\ 5 & 1, 2, 0 \\ 6 & 0, 2, 0 \end{array}$

indem Sie zuerst mit "Neu" die Koordinaten eingeben und mit "Einzelknoten erzeugen" den Knoten erzeugen.

3D-Netzgitter erzeugen

Wählen Sie Menü "3D-Netzgitter" um ein 20x50 Netzgitter zu generieren. Geben Sie die Kanten 1,2,5 und 6 sowie die Anzahl in X-Richtung = 20 und in Y-Richtung = 50 ein um ein Netzgitter mit Menü "3D-Netzgitter generieren" zu erzeugen.

Dannach klicken Sie auf den Farbenkasten für eine neue Farbe und erhöhen mit "Neu" die Elementgruppe auf 2.

Grundfarben:	Knotenbereich kopieren
	Knoten vereinen
	Knoten prüfen
	Netzgeneratoren
	2D-Netzgenerator
Benutzerdefinierte Farben:	3D-Netzgitter
	EG= 2 V Neu
Farben definieren >>	DXF-Linien einladen
OK Abbrechen	UNDO / REDO

Wählen Sie wieder Menü "3D-Netzgitter" um das zweite Netzgitter zu generieren. Geben Sie die Kanten 2,3,4 und 5 sowie die Anzahl in X-Richtung = 3 und in Y-Richtung = 50 ein um ein Netzgitter mit Menü "3D-Netzgitter generieren" zu erzeugen.

Temperatur-Analyse einstellen

Wählen Sie Register "FEM-Analyse" und das Menü "Temperatur" um den Rechenablauf für die Temperatur-Analyse einzustellen.

Unter Register "FEM-Projekt bearbeiten" können nun über das Menü Temperatur

die Knoten-Temperaturen sowie Wärmequellen, Konvektionen und Strahlungen eingegeben werden.

Knoten-Temperaturen (°C)	● Stationär ○ Instationär ○ Statik
Punktquelle, Lasttyp 2 (W)	Materialdaten
	Material-Datenbank
Flächenquelle, Lasttyp 7 (W/m²)	Konvektions-Datenbank
Konvektion, Lasttyp 8 (W/m³K)	Internet-Links:
Strahlung, Lasttyp 9	Wärmeleitfähigkeit für unter. Materialien Spez. Wärmekapazität für unter. Materialien

Mit "Konvektions-Datenbank" können wichtige Konvektionen gespeichert werden:

Bezeichnung:	Konvektion	isolierte Wand				
Temperatur (°C):	27		1			
Konvektion (W/m²K):	30	30				
Add Delete	Save	Material übernehmen	Datenbank einlad			
Werkstoff		Temperatur:	Konvektion:			
Aussen -10 °C Aussen -18 °C Aussen -5 ° C Dach letzte Schicht Dachboden -4 °C Erdreich 8 °C Garage -8 °C Innen Rsi 0.25 Innenboden 8 °C Innenboden 8 °C Innenwand	-10 -18 -5 -10 -4 8 -8 20 20 20 8 20		25 25 25 10 10 10 7.692 4 5.882 5.882 7.692			

Knoten-Temperaturen erzeugen

Die Temperatur auf der linken Wandseite beträgt 1000 °C. Wählen Sie dazu in der Temperatur-Dialogbox das Menü "Knoten-Temperaturen" und erzeugen mit einem aufgespannten Rahmen auf der linken Seite die Knoten-Temperaturen.

		Rechteck aufspannen	
Randbedingungen	- 🗆 X		
Anzahl Randbedingungen aktuell: 50	Neu		
Wert der Randbedingung: 1000			
Freiheitsgrad sperren:			
🗹 Temperatur	🔲 in Z-Richtung		
in Y-Richtur	ng 📃 Einspannung		
Selectieren			
Flächenmodus	Rechteck aufspannen		
🔘 einzelne Knoten anklicken 🛛 🔘 a	alle angezeigten Knoten wählen		
O Koordinatenbereich definieren	alle angezeigten Surfaces wählen		
RB-Symbole umdrehen	n RB-Farbe:		
Cancel Editor	RBs erzeugen		
	RBs löschen		

Konvektion erzeugen

Wählen Sie in der Temperatur-Dialogbox das Menü "Konvektion, Lasttyp 8" um die Konvektion mit Luft von 30 W/m²K und der Umgebungstemperatur von 27 °C mit einem aufgepannten Rahmen auf der rechten Seite einzugeben.

Konvektion erze	ugen	- 0	×	
Aktueller Lastfall:	1			
Anzahl Lastwerte:	50	Neu	1	
Wert der Konvektig	on: 30	(W/m³K)		
Temperatur:	27	(°C)		
Freiheitsgrad:	 X-Richtung Y-Richtung 	 Z-Richtung senkrecht zur R\u00e4che 		
Selectieren O Rächenmodus		Rechteck aufspannen		
 einzelne Knoter Koordinatenber 	n anklicken eich definieren	◯ alle angezeigten Knoten wähler		
Cancel	Editor	Konvektion erzeugen		
		Konvektion löschen]	
			1	
			1	
			1	
			1	

Wärmeleitfähigkeiten erzeugen

Wählen Sie in der Temperatur-Dialogbox das Menü "Materialdaten" um die Wärmeleitfähigkeit der Wand von 1.2 W/mK für die Elementgruppe 1 einzugeben.

	Bezeichnung	Materialwerte			
ł.	E-Modul	1			
	Poisson-Zahl	0			
	Dichte	0			
	Waermekoeffizient	0			
	Waermeleitfähigk	1.2			
	spez. Wärmekap	0			
	Referenztempera	0			
	Wärmestrom	0			
	Dämpfung	0			
	Wandstärke	1			
E	ementgruppe: 1	Elementtyp: QUA8S		<	>
	O Isotrop	Temperatur			
	Material-Datenban	k	ОК		

Scrollen Sie zur Elementgruppe 2 um die Wärmeleitähigkeit der Isolation von 0.3 W/mK einzugeben.

	Bezeichnung	Materialwerte			
	E-Modul	1			
	Poisson-Zahl	0			
	Dichte	0			
	Waermekoeffizient	0			
	Waermeleitfähigk	.3			
	spez. Wärmekap	0			
	Referenztempera	0			
	Wärmestrom	0			
	Dämpfung	0			
	Wandstärke	1			
e.					
Ð	ementgruppe: 2	Elementtyp: QUA8	Satur	<	>
	Material-Datenban	k	ОК		
F					

Alle anderen Werte sind Null und werden nicht benötigt. Das E-Modul wird ebenfalls nicht benötigt muß aber immer größer Null sein sonst bricht der Solver ab.

Die Wandstärke kann ebenfalls Null sein wird aber dann vom Solver auf 1 m gesetzt.

Sichern Sie das Modell unter einem beliebigen Namen mit Register "Datei" und "Speichern" ab.

FEM-Analyse

Wählen Sie das Register "FEM-Analyse" und das Icon Temperaturen mit dem Quick-Solver zu berechnen.

Wählen Sie Menü "2D-Scheiben CPS6 or CPS8 (quadratic plane Stress element)" und "Start FEM-Solver with INP-Interface" um MEANS V12 zu beenden und den FEM-Solver zu starten.

Datei Ansicht	Netzgeneri	ierung	FEM-Pr	rojekt b	earbeiten	FEM-Analy	se Erge	ebnisausv	vertung
3. Temperatur FEM-Analyse	* y	FEM-Sol	ver wähler -Ablauf	n N	nfos zum Fl ⁄lodell-Abn Infos Struk	M-Modell nessungen turmodell ry	FEM-Ass	istent 🕞	
Quick-Solver							11 		×
Normal Precision			C ~ C D C D) (au a dai	a alana atraa	a alamant)			
Normal Precision	2D-Sch3D-Sch	heiben CPS halen S6 or	56 or CPS8 r S8 (6- or 8	3 (quadri 8-node c	c plane stres Juadric <mark>shell</mark>	s element) element)			
Normal Precision	2D-Sct 3D-Sct C3D20	heiben CPS halen S6 or) (20-node o es\FEM-Sv	S6 or CPS8 r S8 (6- or 8 quadric isop rstem MEA	8 (quadri 8-node c paramet	c plane stres juadric shell ric element) 2\Debug\ing	s element) element) psolver\inpsolver	64bit.e	Browser	
Normal Precision	2D-Sct 3D-Sct C3D20 C:\Program File C:\projekte\cc	heiben CPS halen S6 or) (20-node o es\FEM-Sy onvection\	56 or CPS8 r S8 (6- or 8 quadric isop rstem_MEA beispiel 1\b	3 (quadri 8-node c paramet ANS_V1 b1.INP	c plane stres juadric shell ric element) 2\Debug\inp	s element) element) psolver\inpsolver	64bit.e	Browser	
Normal Precision	2D-Sch 3D-Sch C3D20 C:\Program File C:\projekte\cc Select Solver	heiben CPS halen S6 or) (20-node o es\FEM-Sy onvection\ r () In-C	66 or CPS8 r S8 (6- or 8 quadric isop rstem_MEA beispiel 1\ <u>k</u> Core-Solver	3 (quadri 8-node c paramet ANS_V1 b1.INP	c plane stres juadric shell ric element) 2\Debug\inp) Out-of-Co	s element) element) osolver\inpsolver pre-Solver	64bit.e	Browser	

Nach der FEM-Berechnung das aktivierte Menü "Postprocessing MEANS V12 for DirectX11 starten" um MEANS V12 wieder mit dem FEM-Modell darzustellen.

		VIZ IOI DIFECTA	11 starten
Ton ausschalten	Rechenzeit:	0:0:0:1:93	Abbruch
actoring the system of sing up to 1 cpu(s) fo	equations using the sym r the heat flux calculati	metric spooles solver ion.	
verage flux= 6.150738 ime avg. flux= 6.15073	8		
argest residual flux=	0.000000 in node 2656 and mp= 9.889866e+02	d dof 0	
rgest increment of te	emp= 1.587631e-11 in node	250 and dof 0	
rgest increment of te rgest correction to t nvergence	emp= 1.587631e-11 in node	250 and dof 0	

Postprocessing

Wählen Sie das Register "Ergebnisauswertung" und das Icon Immediate um die Knoten-Temperaturen im stationären Zustand grafisch darzustellen.

FEM-System MEANS V12 - Strukturdatei C:\projekte\convection\beispiel 1\b1.fem

×

Oatei Ansicht Netzge	enerierung FEM-Proje	kt bearbeiten FEM-Analys	se Ergebnisauswertung
Ergebnisse auswerten	Verformungsfaktor Knotenwerte picken Skalieren/Anzeigen 🕞	Legende 1 Diagramm 1 Legenden/Diagramme	DXF-Postprocessing Value-Animation S DXF/Animation Da
Temperatur			
Stationäre Knotentemperaturen			
1000.0			
855.3			
720.6			
585.9			
451.3			
316.6			
181.9			
57.2			
Bearbeiten +			
Y			
A	-		

Wählen Sie das Menü "Diagram 1" um den Verlauf der Temperaturen in X-Richtung in einem Diagramm darzustellen.

Beispiel 2: Isolierte Wand mit einer 3D-Konvektion

Das vorige Beispiel aus QUA8S-Flächenelementen wird mit einer 3D-Extrudierung in ein Hexaeder-Netz umgewandelt.

Quad	-iverze, ven	emern, Los	chen					30 - 32	
/ierecke	Verfeinem	Konverter	Extrudieren	Rotieren	Löschen	Drehen			
	12	307 1020				202028 - 1223			
	Es	wird ein Bal	ken-, Dreieck	s- oder Vier	recksnetz m	it Z=0 benotigt.			
		н	noten in Z-Ri	chtuna =	20				
					1795. 1	50.0			
		(Z-Objektho	ihe =	1				
		() oder Wand	dstärken au	is Materialda	aten übernehmer	n		
	DXF	UNE	0	30	D-FEM-Netz	erzeugen		Cancel	
	DXF	UNL		31	J-FEM-Netz	erzeugen		Lancel	

Wählen Sie Register "Netzgenerierung" mit das Menü "Quad-Netz, Verfeinern, Löschen" und Register "Extrudieren" um mit Menü "3D-FEM-Netz erzeugen" ein HEX8-Netz mit Anzahl Knoten in Z-Richtung = 20 und Z-Tiefe = 1 m zu generieren.

	😬 — 🗆 X
	Flächen Knoten Linien
	Anzahl Surfaces = 6
	Surface 1
	Surface 2
	Surface 4
	Surface 6
	Hidden-Line erzeugen
	Flächenmodell erzeugen
	Flächen sortieren/optimieren
	Einzelne Flächen ausblenden
	Einzelne Flächen einblenden
	Schnitte mit EGs erzeugen
Y I I I I I I I I I I I I I I I I I I I	Alle wieder einblenden
	Netz aus Flaechenmodell
	Flächenmodus beenden
x	

Eingabe der Knoten-Temperaturen

Die Knotentemperaturen mit 1000 °C auf der linken Seite wurden bereits wie die Materialdaten aus den 2D-Modell übernommen und in die Z-Tiefe extrudiert und brauchen nicht mehr erzeugt werden.

Konvektion erzeugen

Wählen Sie Register "FEM-Projekt bearbeiten" und das Icon ^{Temperatur} und erzeugen eine Konvektion von 30 W/m²K und der Temperatur von 27°C an der rechten Seite indem Sie die Surface 3 anklicken und in der Selectbox erzeugen.

FEM-Projek	ct bearbeiten	FEM-Analyse	Ergebnisauswertung	Training					
b edingungen	1. Randbedi ✓ Randbedir	ingungen 🔹	Elementgruppen		Editor	б. Belastungen	•	Temperatur	
	Fla	ichen-Modus aktivie	rt - Fläche= 3					T ₂	

		7	
H Konvektion erzeugen	- 🗆 X	-	
Aktueller Lastfall: 1		and a start of the	
Anzahl Lastwerte: 931	Neu		
Wert der Konvektion: 30	(W/m²K)	11	
Temperatur: 27	(°C)		
Freiheitsgrad			
O X-Richtung	O Z-Richtung	l de la companya de	
O Y-Richtung	Senkrecht zur Fläche		
Selectieren		1	
Flächenmodus	echteck aufspannen		
○ einzelne Knoten anklicken ○ al	le angezeigten Knoten wählen		
O Koordinatenbereich definieren			
Cancel	Konvektion erzeugen		
	······································		
	Konvektion loschen	1	
		1	
		1	
		ţ	
		1	
			and a second

Speichern Sie nun das FEM-Modell unter einem beliebigen Namen auf der Festplatte ab und führen eine FEM-Analyse durch.

Postprocessing

Nach der FEM-Analyse wählen Sie wieder Register "Ergebnisauswertung" um die Knoten-Temperaturen grafisch auszuwerten. Die Ergebnisse stimmen mit den exakten Werten = 57.41°C genau überein.

